My Squares
Part 2

16x16

 
86
203
166
59
38
107
214
155
6
75
246
187
230
139
22
123
 
173
52
93
196
221
148
45
100
253
180
13
68
29
116
237
132
 
91
198
171
54
43
102
219
150
11
70
251
182
235
134
27
118
 
164
61
84
205
212
157
36
109
244
189
4
77
20
125
228
141
 
83
206
163
62
35
110
211
158
3
78
243
190
227
142
19
126
 
167
58
87
202
215
154
39
106
247
186
7
74
23
122
231
138
 
94
195
174
51
46
99
222
147
14
67
254
179
238
131
30
115
 
170
55
90
199
218
151
42
103
250
183
10
71
26
119
234
135
 
81
208
161
64
33
112
209
160
1
80
241
192
225
144
17
128
 
165
60
85
204
213
156
37
108
245
188
5
76
21
124
229
140
 
96
193
176
49
48
97
224
145
16
65
256
177
240
129
32
113
 
172
53
92
197
220
149
44
101
252
181
12
69
28
117
236
133
 
95
194
175
50
47
98
223
146
15
66
255
178
239
130
31
114
 
169
56
89
200
217
152
41
104
249
184
9
72
25
120
233
136
 
82
207
162
63
34
111
210
159
2
79
242
191
226
143
18
127
 
168
57
88
201
216
153
40
105
248
185
8
73
24
121
232
137
 
 
 
 
 
 
 
         
514
 
 
47
98
223
146
514
 
 
217
152
41
104
514
 
 
34
111
210
159
514
 
 
216
153
40
105
514
 
 
514
514
514
514
514
 

 

This square was also produced using Franklin’s method. It’s the same as the square in Part 1 with two exceptions. I’ve given up symmetry to gain imbedded 4x4s and 12x12s. All 4x4s and 12x12s with the upper left corner at the intersections of row/column 1,5,9 and 13 are pandiagonal magic squares. That applies to all orders that are odd multiples of four in larger squares.

 

Some materials on this site are Copyright © Donald Morris 2005 all rights reserved